Typical Cement Notations and Parameters

CEMENT CHEMISTS' NOTATIONS

$A = Al_2O_3$	$K = K_2O$	$S = SiO_2$
C = CaO	$H = H_2O$	$\overline{S} = SO_3$
$\overline{C} = CO_2$	M = MgO	$P = P_2O_5$
$F = Fe_2O_3$	$N = Na_2O$	$T = TiO_2$

CEMENT MANUFACTURING PARAMETERS

(Values are percentages by mass)

Silica Ratio (SR) =
$$\frac{\text{SiO}_2}{\text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3}$$

Alumina-Iron Ratio (A/F) =
$$\frac{\text{Al}_2\text{O}_3}{\text{Fe}_2\text{O}_3}$$

Lime Saturation Factor (LSF)

If A/F = > 0.64
$$LSF = \frac{CaO}{2.8 \text{ SiO}_2 + 1.65 \text{ Al}_2O_3 + 0.35 \text{ Fe}_2O_3}$$
If A/F = < 0.64
$$LSF = \frac{CaO}{2.8 \text{ SiO}_2 + 1.1 \text{ Al}_2O_3 + 0.7 \text{ Fe}_2O_3}$$

Percent Liquid (Liquid Phase) = $1.13 \text{ C}_3\text{A} + 1.35 \text{ C}_4\text{AF} + \text{MgO}^* + \text{Alkalies}$ (*MgO should not exceed 2%)

$$Burnability\ Index\ (BI) = \frac{C_3S}{C_4AF + C_3A}$$

Burnability Factor (BF) = LSF + 10 SR - 3 (MgO + Alkalies)

Ignition Loss = $0.44 \text{ CaCO}_3 + 0.524 \text{ MgCO}_3$

(does not include clays' moisture of constitution)

Total Carbonates (TC) = 1.784 CaO + 2.09 MgO

Total Alkalies as $Na_2O = Na_2O + 0.658 K_2O$

Percent Calcination (Raw Feed) = $\frac{(f_i - d_i)}{f_i} \times 100$

 $(f_i = Ignition loss of original feed; d_i = ignition loss of the sample)$

BOGUE CALCULATION FOR CLINKER CONSTITUENTS

$$\begin{split} &\text{If A/F} = > 0.64 \\ &C_3 S = 4.071 \text{ CaO} - (7.602 \text{ SiO}_2 + 6.718 \text{ Al}_2 \text{O}_3 + 1.43 \text{ Fe}_2 \text{O}_3)^* \\ &C_2 S = 2.867 \text{ SiO}_2 - 0.7544 \text{ C}_3 \text{S} \\ &C_3 \text{A} = 2.65 \text{ Al}_2 \text{O}_3 - 1.692 \text{ Fe}_2 \text{O}_3 \\ &C_4 \text{AF} = 3.043 \text{ Fe}_2 \text{O}_3 \\ &\text{If A/F} = < 0.64 \\ &C_3 S = 4.071 \text{ CaO} - (7.602 \text{ SiO}_2 + 4.479 \text{ Al}_2 \text{O}_3 + 2.859 \text{ Fe}_2 \text{O}_3)^* \\ &C_2 S = 2.867 \text{ SiO}_2 - 0.7544 \text{ C}_3 \text{S} \\ &C_3 \text{A} = 0 \end{split}$$

Solid Solution ($C_4AF + C_2F$) = 21.1 $Al_2O_2 + 1.702 Fe_2O_3$ (*For calculating C_3S in cement, 2.852 SO_3 is added to the parentheses in the equation)

CLINKER AND CEMENT CONSTITUENTS

Tricalcium Silicate	C_3S	$3CaO \cdot SiO_2$
Dicalcium Silicate	C_2S	$2CaO \cdot SiO_2$
Tricalcium Aluminate	C_3A	$3CaO \cdot Al_2O_3$
Tetracalcium Aluminoferrite	C_4AF	$4CaO \cdot Al_2O_3 \cdot Fe_2O_3$
Anhydrite	$C\overline{S}$	$CaO \cdot SO_3$
Gypsum	$C\overline{S}H$	$CaO \cdot SO_3 \cdot 2H_2O$
Hemihydrate (Bassanite)	$C\overline{S}H_{0.5}$	$CaO \cdot SO_3 \cdot \frac{1}{2}H_2O$
Calcium Carbonate	$C\overline{C}$	$CaO \cdot CO_2$

CEMENT HYDRATION PRODUCTS

Calcium Hydroxide	CH	CaO·H ₂ O
Calcium Silicate Hydrate	C-S-H	3CaO·2SiO ₂ ·8H ₂ O
Ettringite or Trisulfoaluminate Hydrate	$C_6A\overline{S}_3H_{32}$	6CaO·Al ₂ O ₃ ·3SO ₃ ·32H ₂ O
Monosulfoaluminate Hydrate or Monosulfate	$C_4A\overline{S}H_{12}$	$4\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot\text{SO}_3\cdot\text{12H}_2\text{O}$
Water	Н	H_2O